
Node.js Interview Questions

EMAIL WEBCALL
+91-8233266276 info@grootacademy.com grootacademy.com

http://grootacademy.com/
tel:+91%208233266276
mailto:info@grootacademy.com
https://grootacademy.com/

Beginner Node.js Interview Questions

1. What is a first class function in Java Script?

2. What is Node.js and how it works?

3. How do you manage packages in your node.js project?

4. How is Node.js better than other frameworks most popularly used?

5. Explain the steps how “Control Flow” controls the functions calls?

6. What are some commonly used timing features of Node.js?

7. What are the advantages of using promises instead of callbacks?

8. What is fork in node JS?

9. Why is Node.js single-threaded?

10. How do you create a simple server in Node.js that returns Hello World?

11. How many types of API functions are there in Node.js?

12. What is REPL?

13. List down the two arguments that async. queue takes as input?

14. What is the purpose of module. exports?

15. What tools can be used to assure consistent code style?

Intermediate Node.js Interview Questions

16. What do you understand by callback hell?

17. What is an event-loop in Node JS?

18. If Node.js is single threaded then how does it handle concurrency?

Page 1 © Copyright by I Groot Academy

Contents

Gro
ot

 A
ca

de
my

Page 2

Node.js Interview Questions

© Copyright by I Groot Academy

Intermediate Node.js Interview Questions

19. Differentiate between process. next Tick() and set Immediate()?

20. How does Node.js overcome the problem of blocking of I/O operations?

21. How can we use async await in node.js?

22. What is node.js streams?

23. What are node.js buffers?

24. What is middleware?

25. Explain what a Reactor Pattern in Node.js?

26. Why should you separate Express app and server?

27. For Node.js, why Google uses V8 engine?

28. Describe the exit codes of Node.js?

29. Explain the concept of stub in Node.js?

Advanced Node.js Interview Questions

30. What is an Event Emitter in Node.js?

31. Enhancing Node.js performance through clustering.

32. What is a thread pool and which library handles it in Node.js

33. What is WASI and why is it being introduced?

34. How are worker threads different from clusters?

35. How to measure the duration of async operations?

36. How to measure the performance of async operations?

(.....Continued)

Gro
ot

 A
ca

de
my

https://www.grootacademy.com/node-js-interview-questions/

Premise

“Any application that can be written in JavaScript, will eventually be written in

JavaScript.” -Jeff Atwood

This was said back in 2007, and we can say that it is proving true till now. You can
think of any technical keyword and there might be a JavaScript library build around
it. So if it’s so popular and in demand, this can be a great programming language to
learn. But that’s not the only skill that is required, since you have to apply this to
solve practical problems. And one of such problems is to build scalable products.

Gen Z backend

Aer J Query animation dev shied to a single page application for better control of
UI/UX and thus came frontend frameworks such as angular JS and angular. A er that
JavaScript was made available to port into literally any modern machine that exists
and runs as a standalone application i.e. Node.js. It was widely accepted as a backend
framework and comes to the top, 2nd year in a row in 2020 of Stack Overflow survey.

As developers are busy getting an experience in node.js it’s nice to have a curated list
of Node.js interview questions to revise. Also, to further consolidate your
knowledge on Java Script, refer to this source.

Beginner Node.js Interview Questions

1. What is a first class function in Java Script?

Page 3 © Copyright by I Groot Academy

Let's get Started

Gro
ot

 A
ca

de
my

Node.js Interview Questions

https://www.grootacademy.com/javascript-interview-questions/
https://www.grootacademy.com/javascript-interview-questions/
https://www.grootacademy.com/javascript-interview-questions/
https://www.grootacademy.com/javascript-interview-questions/
https://www.grootacademy.com/javascript-interview-questions/
https://www.grootacademy.com/javascript-interview-questions/
https://www.grootacademy.com/javascript-interview-questions/
https://www.grootacademy.com/javascript-interview-questions/
https://www.grootacademy.com/javascript-interview-questions/
https://www.grootacademy.com/javascript-interview-questions/
https://www.grootacademy.com/javascript-interview-questions/
https://www.grootacademy.com/javascript-interview-questions/
https://www.grootacademy.com/javascript-interview-questions/
https://www.grootacademy.com/javascript-interview-questions/
https://www.grootacademy.com/javascript-interview-questions/
https://www.grootacademy.com/javascript-interview-questions/
https://www.grootacademy.com/javascript-interview-questions/
https://www.grootacademy.com/javascript-interview-questions/
https://www.grootacademy.com/javascript-interview-questions/
https://www.grootacademy.com/javascript-interview-questions/
https://www.grootacademy.com/javascript-interview-questions/
https://www.grootacademy.com/javascript-interview-questions/
https://www.grootacademy.com/javascript-interview-questions/
https://www.grootacademy.com/javascript-interview-questions/
https://www.grootacademy.com/javascript-interview-questions/
https://www.grootacademy.com/node-js-interview-questions/

Page 4 © Copyright by I Groot Academy

Node.js is a virtual machine that uses JavaScript as its scripting language and runs
Chrome’s V8 JavaScript engine. Basically, Node.js is based on an event-driven
architecture where I/O runs asynchronously making it lightweight and efficient. It is
being used in developing desktop applications as well with a popular framework
called electron as it provides API to access OS-level features such as file system,
network, etc.

3. How do you manage packages in your node.js project?
It can be managed by a number of package installers and their configuration file
accordingly. Out of them mostly use npm or yarn. Both provide almost all libraries of
javascript with extended features of controlling environment-specific configurations.
To maintain versions of libs being installed in a project we use package.json and
package-lock.json so that there is no issue in porting that app to a different
environment.
4. How is Node.js better than other frameworks most popularly

When functions can be treated like any other variable then those functions are first-
class functions. There are many other programming languages, for example, scala,
Haskell, etc which follow this including JS. Now because of this function can be
passed as a param to another function(callback) or a function can return another
function(higher-order function). map() and filter() are higher-order functions that are
popularly used.

2. What is Node.js and how it works?

used?

Gro
ot

 A
ca

de
my

Node.js Interview Questions

https://www.grootacademy.com/node-js-interview-questions/

Page 5 © Copyright by I Groot Academy

Control the order of execution
Collect data
Limit concurrency
Call the following step in the program.

Node.js provides simplicity in development because of its non-blocking I/O and
even-based model results in short response time and concurrent processing,
unlike other frameworks where developers have to use thread management.

It runs on a chrome v8 engine which is written in c++ and is highly performant
with constant improvement.

Also since we will use Javascript in both the frontend and backend the
development will be much faster.

And at last, there are ample libraries so that we don’t need to reinvent the
wheel.

setTimeout/clearTimeout – This is used to implement delays in code
execution.
setInterval/clearInterval – This is used to run a code block multiple times.
setImmediate/clearImmediate – This is used to set the execution of the code
at the end of the event loop cycle.
process.nextTick – This is used to set the execution of code at the beginning of
the next event loop cycle.

7. What are the advantages of using promises instead of
callbacks?

6. What are some commonly used timing features of Node.js?

5. Explain the steps how “Control Flow” controls the functions
calls?

Gro
ot

 A
ca

de
my

Node.js Interview Questions

https://www.grootacademy.com/node-js-interview-questions/

Page 6 © Copyright by I Groot Academy

11. How many types of API functions are there in Node.js?
There are two types of API functions:

A fork in general is used to spawn child processes. In node it is used to create a new
instance of v8 engine to run multiple workers to execute the code.

9. Why is Node.js single-threaded?
Node.js was created explicitly as an experiment in async processing. This was to try a
new theory of doing async processing on a single thread over the existing thread-
based implementation of scaling via different frameworks.

10. How do you create a simple server in Node.js that returns

Asynchronous, non-blocking functions - mostly I/O operations which can be
fork out of the main loop.

Synchronous, blocking functions - mostly operations that influence the
process running in the main loop.

The main advantage of using promise is you get an object to decide the action that
needs to be taken a er the async task completes. This gives more manageable code
and avoids callback hell.

8. What is fork in node JS?

PL in Node.js stands for Read, Eval, Print, and Loop, which further means evaluating

12. What is REPL?

Hello World?

var http = require("http");
http.createServer(function (request, response) {

response.writeHead(200, { 'Content-Type': 'text/plain'}) ;
response.end('Hello World\n') ;

}) . l isten(3000);

Gro
ot

 A
ca

de
my

Node.js Interview Questions

https://www.grootacademy.com/node-js-interview-questions/

Page 7 © Copyright by I Groot Academy

14. What is the purpose of module.exports?

This is used to expose functions of a particular module or file to be used elsewhere in
the project. This can be used to encapsulate all similar functions in a file which further
improves the project structure. For example, you have a file for all utils functions with
util to get solutions in a different programming language of a problem statement.

16. What do you understand by callback hell?

15. What tools can be used to assure consistent code style?
ES Lint can be used with any IDE to ensure a consistent coding style which further
helps in maintaining the codebase.

Intermediate Node.js Interview Questions

13. List down the two arguments that async.queue takes as
input?

Task Function
Concurrency Value

Thus using module.exports we can use these functions in some other file:

const getSolutionInJavaScript = async ({
problem_id

}) => {
. . .
} ;
const getSolutionInPython = async ({

problem_id
}) => {
. . .
} ;
module.exports = { getSolutionInJavaScript, getSolutionInPython }

const { getSolutionInJavaScript, getSolutionInPython} = require("./utils")Gro
ot

 A
ca

de
my

Node.js Interview Questions

https://www.grootacademy.com/node-js-interview-questions/

Page 8 © Copyright by I Groot Academy

async_A(function(){
async_B(function(){

async_C(function(){
async_D(function(){
. . . .
}) ;

}) ;
}) ;

}) ;

Node.js Event Loop

For the above example, we are passing callback functions and it makes the code
unreadable and not maintainable, thus we should change the async logic to avoid
this.

17. What is an event-loop in Node JS?
Whatever that is async is managed by event-loop using a queue and listener. We can
get the idea using the following diagram:

Gro
ot

 A
ca

de
my

Node.js Interview Questions

https://www.grootacademy.com/node-js-interview-questions/

Page 9 © Copyright by I Groot Academy

This gives the output:

The main loop is single-threaded and all async calls are managed by libuv library.

For example:

This is because libuv sets up a thread pool to handle such concurrency. How many
threads will be there in the thread pool depends upon the number of cores but you
can override this.

19. Differentiate between process.nextTick() and

So when an async function needs to be executed(or I/O) the main thread sends it to a
different thread allowing v8 to keep executing the main code. Event loop involves
different phases with specific tasks such as timers, pending callbacks, idle or prepare,
poll, check, close callbacks with different FIFO queues. Also in between iterations it
checks for async I/O or timers and shuts down cleanly if there aren't any.
18. If Node.js is single threaded then how does it handle

set I mmediat e() ?

concurrency?

Hash: 1213
Hash:
1225
Hash: 1212
Hash:
1222

const crypto = require("crypto");
const start = Date.now();
function logHashTime() {

crypto.pbkdf2("a", "b", 100000, 512, "sha512", () => {
console.log("Hash: " , Date.now() - start);

}) ;
}
logHashTime();
logHashTime();
logHashTime();
logHashTime();

Gro
ot

 A
ca

de
my

Node.js Interview Questions

https://www.grootacademy.com/node-js-interview-questions/

Page 10 © Copyright by I Groot Academy

Here is an example of using async-await pattern:

Since the node has an event loop that can be used to handle all the I/O operations in
an asynchronous manner without blocking the main function.

So for example, if some network call needs to happen it will be scheduled in the
event loop instead of the main thread(single thread). And if there are multiple such
I/O calls each one will be queued accordingly to be executed separately(other than
the main thread).
Thus even though we have single-threaded JS, I/O ops are handled in a nonblocking
way.
21. How can we use async await in node.js?

Both can be used to switch to an asynchronous mode of operation by listener
functions.

process.nextTick() sets the callback to execute but setImmediate pushes the callback
in the queue to be executed. So the event loop runs in the following manner

timers–>pending callbacks–>idle,prepare–>connections(poll,data,etc)–>check–
>close callbacks
In this process.nextTick() method adds the callback function to the start of the next
event queue and setImmediate() method to place the function in the check phase of
the next event queue.

20. How does Node.js overcome the problem of blocking of I/O

operations?

Gro
ot

 A
ca

de
my

Node.js Interview Questions

https://www.grootacademy.com/node-js-interview-questions/

Page 11 © Copyright by I Groot Academy

// this code is to retry with exponential backoff
function wait (timeout) {
return new Promise((resolve) => {

setTimeout(() => {
resolve()

} , timeout);
}) ;

}
async function requestWithRetry (url) {
const MAX_RETRIES = 10;
for (let i = 0; i <= MAX_RETRIES; i++) {
try {
return await request(url) ;

} catch (err) {
const timeout = Math.pow(2, i) ;
console.log('Waiting', timeout, 'ms') ;
await wait(timeout);
console.log('Retrying', err.message, i) ;

}
}

}

22. What is node.js streams?
Streams are instances of EventEmitter which can be used to work with streaming
data in Node.js. They can be used for handling and manipulating streaming large
files(videos, mp3, etc) over the network. They use buffers as their temporary storage.

There are mainly four types of the stream:

23. What are node.js buffers?

Writable: streams to which data can be written (for example,
fs.createWriteStream()).
Readable: streams from which data can be read (for example,
fs.createReadStream()).
Duplex: streams that are both Readable and Writable (for example, net.Socket).
Transform: Duplex streams that can modify or transform the data as it is written
and read (for example, zlib.createDeflate()).

Gro
ot

 A
ca

de
my

Node.js Interview Questions

https://www.grootacademy.com/node-js-interview-questions/

Page 12 © Copyright by I Groot Academy

Well, are there any other options available? Yes, of course, we have Spidermonkey
from Firefox, Chakra from Edge but Google’s v8 is the most evolved(since it’s open-
source so there’s a huge community helping in developing features and fixing bugs)
and fastest(since it’s written in c++) we got till now as a JavaScript and WebAssembly
engine. And it is portable to almost every machine known.

The server is responsible for initializing the routes, middleware, and other application
logic whereas the app has all the business logic which will be served by the routes
initiated by the server. This ensures that the business logic is encapsulated and
decoupled from the application logic which makes the project more readable and
maintainable.

27. For Node.js, why Google uses V8 engine?

Middleware comes in between your request and business logic. It is mainly used to
capture logs and enable rate limit, routing, authentication, basically whatever that is
not a part of business logic. There are third-party middleware also such as body-
parser and you can write your own middleware for a specific use case.

25. Explain what a Reactor Pattern in Node.js?

Reactor pattern again a pattern for nonblocking I/O operations. But in general, this is
used in any event-driven architecture. There are two components in this: 1. Reactor 2.
Handler. Reactor: Its job is to dispatch the I/O event to appropriate handlers Handler:
Its job is to actually work on those events

26. Why should you separate Express app and server?

In general, buffers is a temporary memory that is mainly used by stream to hold on to
some data until consumed. Buffers are introduced with additional use cases than
JavaScript’s Unit8Array and are mainly used to represent a fixed-length sequence of
bytes. This also supports legacy encodings like ASCII, utf-8, etc. It is a fixed(non-
resizable) allocated memory outside the v8.

24. What is middleware?

Gro
ot

 A
ca

de
my

Node.js Interview Questions

https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
https://www.grootacademy.com/node-js-interview-questions/

Page 13 © Copyright by I Groot Academy

28. Describe the exit codes of Node.js?
Exit codes give us an idea of how a process got terminated/the reason behind
termination.

A few of them are:

29. Explain the concept of stub in Node.js?
Stubs are used in writing tests which are an important part of development. It
replaces the whole function which is getting tested.

This helps in scenarios where we need to test:

Uncaught fatal exception - (code - 1) - There has been an exception that is not
handled
Unused - (code - 2) - This is reserved by bash
Fatal Error - (code - 5) - There has been an error in V8 with stderr output of the
description
Internal Exception handler Run-time failure - (code - 7) - There has been an
exception when bootstrapping function was called
Internal JavaScript Evaluation Failure - (code - 4) - There has been an exception
when the bootstrapping process failed to return function value when evaluated.

External calls which make tests slow and difficult to write (e.g HTTP calls/ DB
calls)
Triggering different outcomes for a piece of code (e.g. what happens if an error is
thrown/ if it passes)

For example, this is the function:
Gro

ot
 A

ca
de

my

Node.js Interview Questions

https://www.grootacademy.com/node-js-interview-questions/

Page 14 © Copyright by I Groot Academy

const request = require('request') ; const getPhotosByAlbumId = (id) => { const
requestUrl = `https://jsonplaceholder.typicode.com/albums/${id}/photos?_limit=3`;
return new Promise((resolve, reject) => {

request.get(requestUrl, (err, res, body) => {
if (err) {

return reject(err);
}
resolve(JSON.parse(body));

}) ;
}) ;
} ;
module.exports = getPhotosByAlbumId;
To test this function this is the stub
const expect = require('chai') .expect ;
const request = require('request') ;
const sinon = require('sinon') ;
const getPhotosByAlbumId = require(' ./ index') ;
describe('with Stub: getPhotosByAlbumId', () => {
before(() => {

sinon.stub(request, 'get')
.yields(null , null , JSON.stringify([

{
"albumId": 1 ,
"id": 1 ,
"title": "A real photo 1",
"url" : "https://via.placeholder.com/600/92c952",
"thumbnailUrl" : "https://via.placeholder.com/150/92c952"

} ,
{

"albumId": 1 ,
"id": 2,
"title": "A real photo 2",
"url" : "https://via.placeholder.com/600/771796",
"thumbnailUrl" : "https://via.placeholder.com/150/771796"

} ,
{

"albumId": 1 ,
"id": 3,
"title": "A real photo 3",
"url" : "https://via.placeholder.com/600/24f355",
"thumbnailUrl" : "https://via.placeholder.com/150/24f355"

}
])) ;

}) ;
after(() => {

request.get.restore();
}) ;
it('should getPhotosByAlbumId', (done) => {

getPhotosByAlbumId(1) .then((photos) => {
expect(photos.length).to.equal(3);
photos.forEach(photo => {

expect(photo).to.have.property(' id') ;
expect(photo).to.have.property('title') ;
expect(photo).to.have.property('url ') ;

}) ;
done();

Gro
ot

 A
ca

de
my

Node.js Interview Questions

https://www.grootacademy.com/node-js-interview-questions/

Page 15 © Copyright by I Groot Academy

Advanced Node.js Interview Questions

30. What is an Event Emitter in Node.js?
EventEmitter is a Node.js class that includes all the objects that are basically capable
of emitting events. This can be done by attaching named events that are emitted by
the object using an eventEmitter.on() function. Thus whenever this object throws an
even the attached functions are invoked synchronously.

31. Enhancing Node.js performance through clustering.
Node.js applications run on a single processor, which means that by default they
don’t take advantage of a multiple-core system. Cluster mode is used to start up
multiple node.js processes thereby having multiple instances of the event loop.
When we start using cluster in a nodejs app behind the scene multiple node.js
processes are created but there is also a parent process called the cluster manager
which is responsible for monitoring the health of the individual instances of our
application.

const EventEmitter = require('events') ;
class MyEmitter extends EventEmitter
{} const myEmitter = new MyEmitter() ;
myEmitter.on('event' , () => {

console.log('an event occurred!') ;
}) ;
myEmitter.emit('event') ;

Gro
ot

 A
ca

de
my

Node.js Interview Questions

https://www.grootacademy.com/node-js-interview-questions/

Page 16 © Copyright by I Groot Academy

Thread Pool

Clustering in Node.js

The Thread pool is handled by the libuv library. libuv is a multi-platform C library that
provides support for asynchronous I/O-based operations such as file systems,
networking, and concurrency.

33. What is WASI and why is it being introduced?

32. What is a thread pool and which library handles it in Node.js

Gro
ot

 A
ca

de
my

Node.js Interview Questions

https://www.grootacademy.com/node-js-interview-questions/

Page 17 © Copyright by I Groot Academy

Performance API provides us with tools to figure out the necessary performance
metrics. A simple example would be using async_hooks and perf_hooks

Web assembly provides an implementation of WebAssembly System Interface
specification through WASI API in node.js implemented using WASI class. The
introduction of WASI was done by keeping in mind its possible to use the underlying
operating system via a collection of POSIX-like functions thus further enabling the
application to use resources more efficiently and features that require system-level
access.

34. How are worker threads different from clusters?
Cluster:

There is one process on each CPU with an IPC to communicate.
In case we want to have multiple servers accepting HTTP requests via a single
port, clusters can be helpful.
The processes are spawned in each CPU thus will have separate memory and
node instance which further will lead to memory issues.

Worker threads:

There is only one process in total with multiple threads.
Each thread has one Node instance (one event loop, one JS engine) with most of
the APIs accessible.
Shares memory with other threads (e.g. SharedArrayBuffer)
This can be used for CPU-intensive tasks like processing data or accessing the file
system since NodeJS is single-threaded, synchronous tasks can be made more
efficient leveraging the worker's threads.

35. How to measure the duration of async operations?Gro
ot

 A
ca

de
my

Node.js Interview Questions

https://wasi.dev/
https://wasi.dev/
https://www.grootacademy.com/node-js-interview-questions/

Page 18 © Copyright by I Groot Academy

'use strict' ;
const async_hooks = require('async_hooks') ;
const {

performance,
PerformanceObserver

} = require('perf_hooks') ;
const set = new Set() ;
const hook = async_hooks.createHook({

init(id, type) {
if (type === 'Timeout') {

performance.mark(`Timeout-${id}-Init`);
set.add(id);

}
} ,
destroy(id) {

if (set.has(id)) {
set.delete(id);
performance.mark(`Timeout-${id}-Destroy`);
performance.measure(`Timeout-${id}`,

`Timeout-${id}-Init`,
`Timeout-${id}-Destroy`);

}
}
}) ;
hook.enable();
const obs = new PerformanceObserver((list, observer) => {

console.log(list.getEntries()[0]) ;
performance.clearMarks();
observer.disconnect() ;

}) ;
obs.observe({ entryTypes: ['measure'] , buffered: true }) ;
setTimeout(() => {} , 1000);

This would give us the exact time it took to execute the callback.

36. How to measure the performance of async operations?
Performance API provides us with tools to figure out the necessary performance
m et rics.
A simple example would be:Gro

ot
 A

ca
de

my

Node.js Interview Questions

https://www.grootacademy.com/node-js-interview-questions/

Page 19

Node.js Interview Questions

© Copyright by I Groot Academy

const { PerformanceObserver, performance } = require('perf_hooks') ;
const obs = new PerformanceObserver((items) => {

console.log(items.getEntries()[0].duration);
performance.clearMarks();

}) ;
obs.observe({ entryTypes: ['measure'] }) ;
performance.measure('Start to Now');
performance.mark('A') ;
doSomeLongRunningProcess(() => {

performance.measure('A to Now', 'A') ;
performance.mark('B') ;
performance.measure('A to B', 'A' , 'B') ;

}) ;

Gro
ot

 A
ca

de
my

https://www.grootacademy.com/node-js-interview-questions/

Dbms Interview Questions

Pl Sql Interview Questions

Operating System Interview
Questions

Git Interview Questions

C Interview Questions

Web Api Interview Questions

Cpp Interview Questions

Machine Learning Interview
Questions
Css Interview Questions

Django Interview Questions

Ansible Interview Questions

Spring Boot Interview Questions
Tableau Interview Questions
Java Interview Questions

React Native Interview
Questions

Java 8 Interview Questions

Php Interview Questions

Hibernate Interview
Questions
Oops Interview Questions

Docker Interview Questions

Laravel Interview Questions

Dot Net Interview Questions

Linux Interview Questions

Devops Interview Questions

Mysql Interview Questions

Asp Net Interview Questions

Kubernetes Interview
Questions
Aws Interview Questions

Jenkins Interview Questions

C Sharp Interview Questions

Node Js Interview Questions

Mongodb Interview Questions

Power Bi Interview Questions

Page 20 © Copyright by I Groot Academy

Links to More Interview
Questions

Gro
ot

 A
ca

de
my

https://www.grootacademy.com/dbms-interview-questions
https://www.grootacademy.com/pl-sql-interview-questions
https://www.grootacademy.com/operating-system-interview-questions
https://www.grootacademy.com/operating-system-interview-questions
https://www.grootacademy.com/git-interview-questions
https://www.grootacademy.com/c-interview-questions
https://www.grootacademy.com/c-interview-questions
https://www.grootacademy.com/web-api-interview-questions
https://www.grootacademy.com/web-api-interview-questions
https://www.grootacademy.com/cpp-interview-questions
https://www.grootacademy.com/machine-learning-interview-questions
https://www.grootacademy.com/machine-learning-interview-questions
https://www.grootacademy.com/css-interview-questions
https://www.grootacademy.com/django-interview-questions
https://www.grootacademy.com/ansible-interview-questions
https://www.grootacademy.com/spring-boot-interview-questions
https://www.grootacademy.com/tableau-interview-questions
https://www.grootacdemy.com/tableau-interview-questions
https://www.grootacademy.com/java-interview-questions
https://www.grootacademy.com/react-native-interview-questions
https://www.grootacademy.com/react-native-interview-questions
https://www.grootacademy.com/java-8-interview-questions
https://www.grootacademy.com/php-interview-questions
https://www.grootacademy.com/hibernate-interview-questions
https://www.grootacademy.com/hibernate-interview-questions
https://www.grootacademy.com/oops-interview-questions
https://www.grootacademy.com/docker-interview-questions
https://www.grootacademy.com/laravel-interview-questions
https://www.grootacademy.com/dot-net-interview-questions
https://www.grootacademy.com/linux-interview-questions
https://www.grootacademy.com/devops-interview-questions
https://www.grootacademy.com/mysql-interview-questions
https://www.grootacademy.com/asp-net-interview-questions
https://www.grootacademy.com/kubernetes-interview-questions
https://www.grootacademy.com/kubernetes-interview-questions
https://www.grootacademy.com/aws-interview-questions
https://www.grootacademy.com/jenkins-interview-questions
https://www.grootacademy.com/c-sharp-interview-questions
https://www.grootacdemy.com/node-js-interview-questions
https://www.grootacademy.com/mongodb-interview-questions
https://www.grootacademy.com/power-bi-interview-questions

